INDUS RANGERS INSTITUTE PVT. LTD

CURRENT ELECTRICITY

1. The reciprocal of specific resistance is	(a)conductance (b)resistivity
(a)conductive resistance	(c)conductivity (d)none of the above
(b)specific conductance	11. When a potential difference is applied across a
(c)conductive resistance	copper wire, the drift velocity of the electron is v. If
(d)plate resistance	the same potential difference is applied across
2. Three resistance, each of 1 Ω in joined parallel.	another copper wire of the same length but double
Three such combinations are put in series. Then the	the diameter, the drift velocity will be
resultant resistance is	(a)2 v (b)v/2 (c)v (d)v/4
(a)9Ω (b)3 Ω (c)1 Ω (d) 1/3 Ω	12 . Which of the following statement is not true?
3.A copper wire of length 1 m and radius 1 mm is	(a)Conductance is the reciprocal of resistance and is
joined in series with an iron wire of length 2 m and	measured in Siemens
radius 3 mm and a current is passed through the	(b)ohm's law is not applicable at very low and very
wires .The ratio of the current densities in the	high temperature
copper and iron wire is	(c)ohm's law is applicable to semiconductors
(a)18:1 (b)9:1 (c)6:1 (d)2:3	(d)ohm's law is not applicable to electron tubes
4. The resistance of a galvanometer is 25Ω and it	discharge tubes and electrolytes
require 50 μA for full deflection. The value of shunt	13 .The drift velocity of electron in a wire of radius r
resistance required to convert it into an ammeter of	is proportional to
5A is	(a)r (b) r^2 (c) r^3 (d)None
(a) $2.5 \times 10^{-4} \Omega$ (b) $1.25 \times 10^{-4} \Omega$	14 .Kirchoff's first law,i.e $\Sigma I = 0$ at the junction
(c) 0.05 Ω (d) 2.5 Ω	deals with conservation of
5. A flow of 10^7 electron per second in a conduction	(a)charge (b)energy (c)momentum (d)angular
wire constitutes a current of	momentum
(a)1.6 x 10^{-26} A (b)1.6 x 10^{12} A	15. Three copper wire have lengths and cross -
(c)1.6 x 10^{-12} A (d)1.6 x 10^{26} A	sectional areas(L,A),(2L,A/2) and (L/2,2 A)
6. A Wire 50 cm long and 1 mm ² in cross section	.Resistance is minimum for
carries a current of 4 A when connected to a 2 V	(a)wire of cross- sectional area A/2
battery. The resistivity of the wire is	(b)wire of area cross sectional a A
(a)2 x 10^{-7} Ω m (b)5 x 10^{-7} Ω m	(c)wire of cross sectional area 2A
(c)4 x $10^{-6} \Omega m$ (d)1 x $10^{-6} \Omega m$	(d) same in all three cases
7. N equal resistors are first connected in series and	16 . The resistance of a material increases with
then in parallel. The ratio of the equivalent	temperature it is a
resistance in the two cases is	(a)metal (b)insulator (c)semiconductor
(a)n (b) $1/n^2$ (c) n^2 (d) $1/n$	(d)semi- metal
8 .Two resistance, 4Ω and 6Ω are is series and a 10	17 . A wire of radius r has resistance R .If it is
resistor is in parallel to the combination. The	stretched uniformly to a wire of radius r plus r/2
resultant resistance is	then the resistance of the wire becomes
(a) 5Ω (b) 8Ω (c) 12Ω (d) 20Ω	(a) 2R (b)4 R (c)16 R (d) 8R
9. A Galvanometer is converted into an ammeter	18 . Five cells, each of emf E are joined in parallel.
when we connect	The total emf of combination is
(a)high resistance is series (b)high resistance in	(a)5 E (b)E/5 (c)E (d)E/2
parallel	19. Carbon resistance of colour bands in order
(c)low resistance in series (d)low resistance in	yellow brown, red its resistance is
parallel	(a)41 Ω (b)41 x $10^{-2}\Omega$

4th Floor Shakumbhari Complex,Chetmani Chauraha ,Bhelupur 9936404655. www.indusrangers.com indusrangers@gmail.com

10. The reciprocal of resistance is

INDUS RANGERS INSTITUTE PVT. LTD.

(c)41 x $10^3 \Omega$ $(d)4.2\Omega$

20. The resistivity e of a wire depend on its

- (a)length (b)area of a cross section (c)shape
- (d) material
- 21. A wire of resistance R is cut into n equal parts .These parts are then connected in parallel.The equivalent resistance of the combination will be

(a)nR

 $(c)^{\frac{n}{p}}$

- 22. The conductivity of a superconductor is (a)infinite (b) very large (c)very small (d)zero
- 23. The resistivity of potentiometer wire 40 x
- 10^{-8} Ohm- m and its area of cross section is 8 x
- $10^{-6}m^2$. If 0.2 ampere current is flowing through the wire the potential radiant will be
- (a) 10^{-2} volt/m

(b) 10^{-1} volt/m

(c)3.2 x 10^{-2} volt/m (d)1 volt/m

- 24. The resistance of an ideal voltmeter is
- (a)zero (b)very low (c)very high (d)infinite
- **25**. Resistance of copper coil is 4.64Ω at 40 °C and
- 5.6Ω at 100° C then its resistance at 0° C
- (a) 5.12
- (b) 4.2
- (c)4

(d) 0.96

- **26**.Carriers of electric current is superconductor are
- (a)electrons

(b)protons

(c)holes

(d)phonons

- 27. Electromotive force is most closely related to
- (a)electric field

(b)magnetic field

- (c)potential difference
- (d) mechanical force
- **28**.Constant an wire is used in making standard
- resistance because its
- (a) specific resistance is low (b)density is high
- (c)temperature coefficient of resistance is negligible
- (d)melting point is high
- 29. These similar cells, each of emf 2 V and internal resistance r Ω send the same current through an external resistance of 2 Ω , when connected in series or in parallel. The strength of the current flowing through the external resistance is
- (a) 2 A (b) 0.75 A
- (c)1A
- (d)1.5 A
- **30**. Potentiometer measures potential more accurately because
- (a) it measures potential in the open circuit
- (b)it uses sensitive galvanometer for null detection
- (c)it uses high resistance potentiometer wire
- (d)it measure potential in the closed circuit